CA3081, CA3082

General Purpose High Current NPN Transistor Arrays

CA3081 and CA3082 consist of seven high current (to 100 mA) silicon NPN transistors on a common monolithic substrate. The CA3081 is connected in a common emitter configuration and the CA3082 is connected in a common collector configuration.

The CA3081 and CA3082 are capable of directly driving seven segment displays, and light emitting diode (LED) displays. These types are also well suited for a variety of other drive applications, including relay control and thyristor firing.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
CA3081	-55 to 125	16 Ld PDIP	E16.3
CA3081F	-55 to 125	16 Ld CERDIP	F16.3
$\begin{aligned} & \text { CA3081M } \\ & (3081) \end{aligned}$	-55 to 125	16 Ld SOIC	M16.15
CA3082	-55 to 125	16 Ld PDIP	E16.3
$\begin{aligned} & \text { CA3082M } \\ & (3082) \end{aligned}$	-55 to 125	16 Ld SOIC	M16.15
$\begin{aligned} & \text { CA3082M96 } \\ & \text { (3082) } \end{aligned}$	-55 to 125	16 Ld SOIC Tape and Reel	M16.15

Pinouts

Features

- CA3081 - Common Emitter Array
- CA3082 - Common Collector Array
- Directly Drive Seven Segment Incandescent Displays and Light Emitting Diode (LED) Display
- 7 Transistors Permit a Wide Range of Applications in Either a Common Emitter (CA3081) or Common Collector (CA3082) Configuration
- High I_{C}. 100mA (Max)
- Low $\mathrm{V}_{\text {CESAT }}$ (at 50mA) 0.4 V (Typ)

Applications

- Drivers for
- Incandescent Display Devices
- LED Displays
- Relay Control
- Thyristor Firing

CA3082
COMMON COLLECTOR CONFIGURATION
(PDIP, SOIC)
TOP VIEW

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Collector-to-Emitter Voltage (VCEO) 16 V
Collector-to-Substrate Voltage (VIIO, Note 1). 20V
Emitter-to-Base Voltage ($\mathrm{V}_{\mathrm{EBO}}$) 5 V
Base Current (IB) 100 mA
Operating Conditions
Temperature Range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Thermal Information		
Thermal Resistance (Typical, Note 2)	$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
CERDIP Package	115	45
PDIP Package	100	N/A
SOIC Package	190	N/A
Maximum Power Dissipation (Any One Transistor)		500 mW
Maximum Junction Temperature (Ceramic Package)		$.175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package)		$.150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range. . . .		C to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) (SOIC - Lead Tips Only)		$300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. The collector of each transistor of the CA3081 and CA3082 is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal (5) should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications For Equipment Design at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Collector-to-Base Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	20	60	-	V
Collector-to-Substrate Breakdown Voltage	$\mathrm{V}_{\text {(BR) } \mathrm{ClO}}$	$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0$	20	60	-	V
Collector-to-Emitter Breakdown Voltage	$\mathrm{V}_{\text {(BR)CEO }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	16	24	-	V
Emitter-to-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR) } \mathrm{EBO}}$	$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}$	5.0	6.9	-	V
DC Forward Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$	$\mathrm{V}_{\text {CE }}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}$	30	68	-	-
		$\mathrm{V}_{\mathrm{CE}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$	40	70	-	-
Base-to-Emitter Saturation Voltage (Figure 4)	$\mathrm{V}_{\text {BESAT }}$	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$	-	0.87	1.2	V
Collector-to-Emitter Saturation Voltage CA3081, CA3082	$\mathrm{V}_{\text {CESAT }}$	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$	-	0.27	0.5	V
CA3081 (Figure 5)		$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$	-	0.4	0.7	V
CA3082 (Figure 5)		$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$	-	0.4	0.8	V
Collector Cutoff Current	ICEO	$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	-	-	10	$\mu \mathrm{A}$
Collector Cutoff Current	ICBO	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-	-	1.0	$\mu \mathrm{A}$

Typical Read - Out Driver Applications

FIGURE 1. SCHEMATIC DIAGRAM SHOWING ONE TRANSISTOR OF THE CA3081 DRIVING ONE SEGMENT OF AN INCANDESCENT DISPLAY

NOTE: The Resistance for R is determined by the relationship:
$R=\frac{V_{P}-V_{B E}-V_{F}(\text { LED })}{I(L E D)}$
$R=0$ for $V_{P}=V_{B E}+V_{F}($ LED $)$
Where: $\mathrm{V}_{\mathrm{P}}=$ Input Pulse Voltage
$V_{F}=$ Forward Voltage Drop Across the Diode
FIGURE 2. SCHEMATIC DIAGRAM SHOWING ONE TRANSISTOR OF THE CA3082 DRIVING A LIGHT EMITTING DIODE (LED)

Typical Performance Curves

FIGURE 3. DC FORWARD CURRENT TRANSFER RATIO vs COLLECTOR CURRENT

FIGURE 5. COLLECTOR-TO-EMITTER SATURATION VOLTAGE vs COLLECTOR CURRENT

FIGURE 4. BASE-TO-EMITTER SATURATION VOLTAGE vs COLLECTOR CURRENT

FIGURE 6. COLLECTOR-TO-EMITTER SATURATION VOLTAGE vs COLLECTOR CURRENT

Dual-In-Line Plastic Packages (PDIP)

-B-

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25 mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, $\mathrm{N}, \mathrm{N} / 2$ and $\mathrm{N} / 2+1$) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030-0.045 inch ($0.76-1.14 \mathrm{~mm}$).

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed $0.15 \mathrm{~mm}(0.006$ inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M16.15 (JEDEC MS-012-AC ISSUE C) 16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
B	0.013	0.020	0.33	0.51	9
C	0.0075	0.0098	0.19	0.25	-
D	0.3859	0.3937	9.80	10.00	3
E	0.1497	0.1574	3.80	4.00	4
e	0.050		BSC	1.27	
BSC	-				
H	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	16			16	
α	0^{0}	8^{0}	0^{0}	8^{0}	-

Rev. 0 12/93

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

F16.3 MIL-STD-1835 GDIP1-T16 (D-2, CONFIGURATION A) 16 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.840	-	21.34	5
E	0.220	0.310	5.59	7.87	5
e	0.10	BSC		BSC	-
eA	0.30	BSC		BSC	-
eA/2	0.15	BSC		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2, 3
N	16		16		8

Rev. 0 4/94

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204

Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240

EUROPE

Intersil SA
Mercure Center
100, Rue de la Fusee 1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 227169310
FAX: (886) 227153029

